metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Cryptand-222)potassium(+) (hydrogensulfido)[5,10,15,20-tetrakis(2-pivalamidophenyl)porphyrinato]ferrate(II)

Mondher Dhifet,^a Mohamed Salah Belkhiria,^a Jean-Claude Daran^b and Habib Nasri^a*

^aDépartement de Chimie, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and ^bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 Route de Norbonne, 31077 Toulouse, Cedex 04, France Correspondence e-mail: nasrih44@yahoo.com

Received 9 July 2009; accepted 16 July 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.046; wR factor = 0.128; data-to-parameter ratio = 12.8.

As part of a systematic investigation for a number of Fe^{II} porphyrin complexes used as biomimetic models for cyto-P450, crystals the title chrome of compound, $[K(C_{18}H_{36}N_2O_6)][Fe^{II}(C_{64}H_{64}N_8O_4)(HS)]$, were prepared. The compound exhibits a non-planar conformation with major ruffling and saddling distortions. The average equatorial iron-pyrrole N atom [Fe $-N_p = 2.102$ (2) Å] bond length and the distance between the Fe^{II} atom and the 24-atom core of the porphyrin ring (Fe $-P_{C}=0.558$ Å) are typical for high-spin iron(II) pentacoordinate porphyrinates. One of the tert-butyl groups in the structure is disordered over two sets with occupancies of 0.84 and 0.16.

Related literature

For general background to iron(II) porphyrin species and their applications, see: Simonneux & Le Maux (2000). For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis of iron(II) picket fence derivatives, see: Collman *et al.* (1975); Nasri *et al.* (1987); Hachem *et al.* (2009). For related structures, see: English *et al.* (1984); Nasri *et al.* (2000). For further details of geometric distortions in related compounds, see: Scheidt & Reed (1981); Scheidt (2000); Hu *et al.* (2005); Jentzen *et al.* (1987). For comparitive bond lengths, see: Allen *et al.* (1987). For the treatment of disordered solvent of crystallization, see: Spek (2009); Stähler *et al.* (2001); Cox *et al.* (2003); Mohamed *et al.* (2003); Athimoolam *et al.* (2005).

Experimental

Crystal data $[K(C_{18}H_{36}N_2O_6)][Fe(C_{64}H_{64}N_8O_4)-(HS)]$ $M_r = 1513.74$ Monoclinic, $P2_1/n$ a = 17.9327 (7) Å b = 21.5340 (7) Å c = 22.7670 (9) Å

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.842, T_{\max} = 0.937$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.128$ S = 1.0512322 reflections 965 parameters Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 180 K $0.25 \times 0.24 \times 0.21 \text{ mm}$

 $\beta = 100.611 \ (2)^{\circ}$ V = 8641.4 (6) Å³

Z = 4

144342 measured reflections 12322 independent reflections 10135 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$ $\theta_{\text{max}} = 23.2^{\circ}$

9 restraints H-atom parameters constrained $\begin{array}{l} \Delta \rho_{max} = 0.58 \mbox{ e } \mbox{ A}^{-3} \\ \Delta \rho_{min} = -0.45 \mbox{ e } \mbox{ A}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2280).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.

metal-organic compounds

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Collman, J. P., Gagne, R. R., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1438.
- Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, 0975–0977.
- English, D. R., Hendrickson, D. N., Suslick, K. S., Eigenbrot, C. W. & Scheidt, W. R. (1984). J. Am. Chem. Soc. 106, 7258–7259.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hachem, I., Belkhiria, M. S., Giorgi, M., Schulz, C. E. & Nasri, H. (2009). *Polyhedron*, **28**, 954–958.
- Hu, C, Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2005). J. Am. Chem. Soc. 127, 15018–15019.

- Jentzen, W., Song, X. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684– 1699.
- Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). *Acta Cryst.* C59, m84–m86.
- Nasri, H., Ellison, K. M., Krebs, C., Huynh, B. H. & Scheidt, W. R. (2000). J. Am. Chem. Soc. 122, 10795–10804.
- Nasri, H., Fischer, J., Bill, E., Trautwein, A. & Weiss, R. (1987). J. Am. Chem. Soc. 109, 2549–2550.
- Scheidt, W. R. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, R. M. Smith & R. Guilard, pp. 49–112. San Diego: Academic Press. Scheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543–555.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Simonneux, G. & Le Maux, P. (2000). The Porphyrin Handbook, Vol. 11, edited by K. M. Kadish, R. M. Smith & R. Guilard, pp. 133–156. San Diego: Academic Press.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.

Acta Cryst. (2009). E65, m967-m968 [doi:10.1107/S1600536809028104]

(Cryptand-222)potassium(+) pivalamidophenyl)porphyrinato]ferrate(II)

(hydrogensulfido)[5,10,15,20-tetrakis(2-

M. Dhifet, M. S. Belkhiria, J.-C. Daran and H. Nasri

Comment

A large number of iron-thiolate porphyrin complexes have been investigated in order to get more insight into the nature of the electronic and steriochemical properties of cytochromes P450 (Simonneux & Le Maux, 2000). In the Cambridge Structural Database (CSD, Version 5.30 of November 2008; Allen, 2002) there are only three structures of iron(II)-thiolate porphyrinates but no structure of hydrosulfido (SH⁻) iron(II) porphyrinate derivative is reported up to date. We report here the molecular structure of the iron(II) picket fence porphyrin (TpivPP) hydrosulfido species. In the structure of (I), the Fe^{2+} cation is coordinated to the sulfur atom of the SH⁻ axial ligand from the pocket side of the TpivPP porphyrin (Fig. 1). The porphinato core undergoes a significant radial expansion in order to accommodate the high-spin Fe²⁺ cation. This is illustrated by the long Fe—N_p and Fe—P_C distances shown by these iron(II) high-spin [Fe^{II}(Porph)(X)]⁻ complexes (X = anionic monodentate ligand). The average equatorial Fe-Np distance in (I) [2.102 (2) Å], which is longer than the corresponding Fe³⁺ species [Fe^{III}(TAP)(SH)] (English et al., 1984) (TAP = tetrakis(p-methoxyphenyl)porphyrinate(2-) [2.015 (2) Å], falls within the range found for five-coordinate high-spin iron(II) porphyrins [2.072- 2.116 Å] (Scheidt & Reed, 1981; Scheidt, 2000; Hu et al., 2005). This is a stereochemical proof that compound (I) is high-spin (S = 2). The Fe—P~C distance [0.7578 Å] is quite longer than those of iron(II) high-spin five-coordinate porphyrines [0.50 - 0.64 Å]. For our model, the axial Fe—S(SH) bond length [2.312 (1) Å] is slightly shorter than those of the three iron(II)-thiolate porphyrinates cited in the literature [2.325 – 2.367 Å]. This distance is longer than the one of the [Fe^{III}(TAP)(SH)] derivative [2.298 (3) Å]. It is noteworthy that Fe—SH distance for compound (I) is shorter than the Fe—S(thiole) bond length found for iron(II) thiole porphyrin species, *i.e.* for the ion complex $[Fe^{II}(TpivPP)(NO_2)(PMS)]^{-}$ (Nasri *et al.*, 2000) where PMS = pentamethylene sulfide) the Fe—S(PMS) distance is 2.380 (4) Å. The structural decomposition method [NSD] (Jentzen et al., 1997) indicates an important ruffling [41%], a quite high saddling [21%] and a moderate doming [14%] of the porphinato core. The negative charge of the $[Fe^{II}(TpivPP)(SH)]^{-1}$ anion is balanced by a $[K(2,2,2-crypt)]^{+1}$ counterion. The average K—O(2,2,2-crypt) and K—N(2,2,2-crypt) distances [2.827 (2) Å and 3.035 (3) Å respectively] are in agreement with the literature values (Allen et al., 1987). There are no intermolecular or intermolecular hydrogen bonds in the structure of (I). The packing diagram for (I) (Fig.2) is simple. There is no evidence for intermolecular π - π bonding between the faces of the porphyrin cores in compound (I). The absence of the π - π interactions results mainly in the steric restrictions requirements of the pivalamide groups that determine the packing environment.

Experimental

The reaction sequence leading to the formation of compound (I) is not full understood at present. When a chlorobenzene solution of $[Fe^{II}(TpivPP)]$ (Hachem *et al.*, 2009), made *in situ*, is mixed under argon with excess of cryptand-222 and potassium thioacetate (C₂H₃OSK) a red-greenish solution was formed. Crystals of (I) were grown by diffusion of hexanes through the chlorobenzene solution.

Refinement

Due to the diffraction limitation of the crystals of (I) (at 180 K), the data collection was limited to 23.22° in θ . Hydrogen atoms were calculated at idealized positions and were refined with 1.2 times the isotropic displacement parameter of the corresponding carbon and nitrogen atoms. The H atom pertaining to the hydrosulfido ligand could not be found in a difference Fourier and was not included in the model.

The *tert-butyl* group of one picket is disordered over two sets. The occupancies of these two positions were refined and then fixed as 0.84 for C62/C63/C64 and 0.16 for C62A/C63A/C64A. The EADP commands in the *SHELXL97* (Sheldrick, 2008) software were used to restrain the parameters of the disordered groups. Some anisotropic displacement ellipsoids of another *tert-butyl* group were rather elongated. This is the case of the anisotropic displacements U22 and U33 of the C29 and C31 carbons of the same *tert-butyl* group. These parameters were restrained to be the same than those of the third CH₃ group (C30) of the same picket which presents normal ansisotropic displacements for such type of carbon moiety.

At the final stage of refinement, clear evidence of the presence of solvent voids of 241 Å³ was obtained (containing approximately 84 electrons). Several trials to find a reasonable model for this were unfruitful. Thus, a correction for diffuse effects due to the inclusion of disordered solvent molecules in the crystal structure was made using the SQUEEZE option in the program *PLATON* (Spek, 2009). The density, the *F(000)* value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option *PLATON* (Spek, 2009). Similar treatments of disordered solvent molecules have been carried out in this manner (Stähler *et al.* (2001); Cox *et al.* (2003); Mohamed *et al.* (2003); Athimoolam *et al.* (2005).

Figures

Fig. 1. A view of the structure of ion complex $[Fe^{II}(TpivPP)(SH)]^-$ and the $[K(2,2,2,-crypt)]^+$ counterion showing the atom numbering schem. Displacement ellipsoids are drawn at 50%. The H atoms and the minor disorder *tert-butyl* group has been omitted for clarity.

Fig. 2. A drawing showing the packing in (I), viewed down the b axis.

(Cryptand-222)potassium(+) (hydrogensulfido)[5,10,15,20-tetrakis(2-pivalamidophenyl)porphyrinato]ferrate(II)

 $F_{000} = 3216$

 $\theta = 2.6 - 23.9^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$ T = 180 K

Prism, dark purple $0.25 \times 0.24 \times 0.21 \text{ mm}$

 $D_{\rm x} = 1.164 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9881 reflections

Crystal data

 $[K(C_{18}H_{36}N_2O_6)][Fe(C_{64}H_{64}N_8O_4)(HS)]$ $M_r = 1513.74$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 17.9327 (7) Å b = 21.5340 (7) Å c = 22.7670 (9) Å $\beta = 100.611$ (2)° V = 8641.4 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	12322 independent reflections
Radiation source: fine-focus sealed tube	10135 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
T = 180 K	$\theta_{\rm max} = 23.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2007)	$h = -17 \rightarrow 19$
$T_{\min} = 0.842, \ T_{\max} = 0.937$	$k = -23 \rightarrow 22$
144342 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.128$	$w = 1/[\sigma^2(F_o^2) + (0.0663P)^2 + 5.9377P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.048$
12322 reflections	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
965 parameters	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
9 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe	0.042199 (18)	0.071342 (15)	0.229070 (15)	0.02035 (11)	
Κ	0.24658 (3)	0.14983 (3)	0.04404 (3)	0.03328 (16)	
S	0.00525 (5)	0.04132 (4)	0.31693 (3)	0.0438 (2)	
01	0.35902 (15)	-0.05101 (13)	0.44571 (15)	0.0879 (10)	
O2	-0.00865 (15)	0.30157 (11)	0.44698 (11)	0.0663 (7)	
O3	-0.38816 (13)	0.07683 (15)	0.18152 (12)	0.0819 (9)	
O4	-0.10604 (18)	-0.25034 (13)	0.24074 (15)	0.0954 (11)	
05	0.17791 (11)	0.21220 (9)	-0.06246 (9)	0.0422 (5)	
O6	0.30993 (11)	0.14053 (10)	-0.05905 (9)	0.0468 (5)	
07	0.23261 (11)	0.01974 (9)	0.05618 (8)	0.0381 (5)	
08	0.11064 (11)	0.10019 (10)	0.06719 (10)	0.0475 (5)	
09	0.26318 (11)	0.25534 (9)	0.12075 (8)	0.0413 (5)	
O10	0.38436 (10)	0.17024 (8)	0.12576 (9)	0.0359 (5)	
N1	0.12768 (11)	0.00670 (9)	0.22448 (9)	0.0227 (5)	
N2	0.12981 (11)	0.13726 (9)	0.25363 (9)	0.0249 (5)	
N3	-0.02512 (12)	0.14767 (9)	0.19543 (10)	0.0269 (5)	
N4	-0.02802 (11)	0.01795 (9)	0.16376 (9)	0.0236 (5)	
N5	0.29610 (13)	0.02326 (11)	0.38752 (10)	0.0374 (6)	
HN5	0.2535	0.0446	0.3810	0.045*	
N6	0.01197 (18)	0.25758 (12)	0.36235 (12)	0.0554 (8)	
HN6	0.0154	0.2213	0.3453	0.067*	
N7	-0.26586 (13)	0.08270 (12)	0.16940 (11)	0.0416 (6)	
HN7	-0.2193	0.0753	0.1882	0.050*	
N8	-0.02707 (13)	-0.17059 (10)	0.23845 (10)	0.0357 (6)	
HN8	-0.0134	-0.1341	0.2543	0.043*	
N9	0.11215 (14)	0.23331 (12)	0.04717 (11)	0.0453 (6)	
N10	0.38315 (12)	0.06590 (10)	0.04173 (10)	0.0341 (5)	
C1	0.11518 (14)	-0.05461 (11)	0.20873 (11)	0.0230 (6)	
C2	0.18483 (15)	-0.08910 (12)	0.22589 (11)	0.0290 (6)	
H2	0.1913	-0.1324	0.2208	0.035*	
C3	0.23912 (15)	-0.04840 (12)	0.25046 (12)	0.0292 (6)	
H3	0.2910	-0.0575	0.2654	0.035*	
C4	0.20305 (14)	0.01169 (11)	0.24964 (11)	0.0241 (6)	

C5	0.23965 (14)	0.06684 (12)	0.27127 (11)	0.0250 (6)
C6	0.20471 (14)	0.12472 (12)	0.27393 (11)	0.0260 (6)
C7	0.24232 (15)	0.17981 (12)	0.30131 (12)	0.0320 (6)
H7	0.2946	0.1836	0.3184	0.038*
C8	0.18931 (15)	0.22458 (12)	0.29799 (12)	0.0331 (7)
H8	0.1969	0.2657	0.3129	0.040*
C9	0.11896 (14)	0.19838 (11)	0.26752 (11)	0.0264 (6)
C10	0.05056 (15)	0.23077 (12)	0.25186 (12)	0.0281 (6)
C11	-0.01628 (15)	0.20707 (12)	0.21737 (12)	0.0303 (6)
C12	-0.08348 (16)	0.24277 (13)	0.19642 (15)	0.0433 (8)
H12	-0.0921	0.2847	0.2062	0.052*
C13	-0.13204 (16)	0.20557 (13)	0.16026 (15)	0.0449 (8)
H13	-0.1809	0.2166	0.1391	0.054*
C14	-0.09595 (14)	0.14579 (12)	0.15975 (12)	0.0304 (6)
C15	-0.12845 (14)	0.09360 (12)	0.12770 (12)	0.0283 (6)
C16	-0.09700 (13)	0.03408 (11)	0.13037 (11)	0.0246 (6)
C17	-0.13244 (15)	-0.01987 (12)	0.09970 (12)	0.0298 (6)
H17	-0.1802	-0.0212	0.0735	0.036*
C18	-0.08482 (15)	-0.06829 (12)	0.11526 (12)	0.0292 (6)
H18	-0.0932	-0.1101	0.1025	0.035*
C19	-0.01910 (14)	-0.04436 (11)	0.15478 (11)	0.0240 (6)
C20	0.04683 (14)	-0.07882 (11)	0.17727 (11)	0.0237 (6)
C21	0.32344 (14)	0.06323 (11)	0.29518 (12)	0.0260 (6)
C22	0.37551 (15)	0.08190 (12)	0.26052 (13)	0.0308 (6)
H22	0.3578	0.0977	0.2215	0.037*
C23	0.45264 (15)	0.07790 (12)	0.28170 (14)	0.0357 (7)
H23	0.4876	0.0905	0.2574	0.043*
C24	0.47844 (15)	0.05530(13)	0.33885 (14)	0.0378 (7)
H24	0.5314	0.0524	0.3537	0.045*
C25	0.42799 (15)	0.03695 (13)	0.37424 (13)	0.0360 (7)
H25	0.4463	0.0219	0.4135	0.043*
C26	0.35034 (15)	0.04034 (12)	0.35277 (12)	0.0308 (6)
C27	0.30111 (17)	-0.02178 (14)	0.42973 (14)	0.0442 (8)
C28	0.2289 (2)	-0.03436 (15)	0.45455 (15)	0.0511 (8)
C29	0.2517 (3)	-0.0560 (2)	0.5186 (2)	0.0941 (13)
H29A	0.2896	-0.0892	0.5207	0.141*
H29B	0.2070	-0.0718	0.5329	0.141*
H29C	0.2734	-0.0211	0.5437	0.141*
C30	0.1771 (2)	0.02138 (19)	0.4526 (2)	0.0719 (11)
H30A	0.2057	0.0566	0.4726	0.108*
H30B	0.1350	0.0113	0.4729	0.108*
H30C	0 1570	0.0323	0 4109	0.108*
C31	0.1864 (3)	-0.0861(2)	0.4166 (2)	0.0855 (11)
H31A	0.1708	-0.0716	0.3754	0.128*
H31B	0.1414	-0.0977	0.4328	0.128*
H31C	0.2197	-0.1223	0.4172	0.128*
C32	0.04810 (15)	0.29677 (12)	0.27287 (13)	0.0324 (7)
C33	0.06150 (16)	0.34574 (13)	0.23722 (15)	0.0394 (7)
H33	0.0751	0.3375	0.1996	0.047*

C34	0.05545 (17)	0.40705 (14)	0.25541 (16)	0.0460 (8)
H34	0.0651	0.4404	0.2306	0.055*
C35	0.03542 (19)	0.41843 (14)	0.30961 (17)	0.0515 (9)
H35	0.0303	0.4601	0.3219	0.062*
C36	0.02253 (19)	0.37037 (15)	0.34681 (16)	0.0522 (9)
H36	0.0099	0.3791	0.3847	0.063*
C37	0.02810 (17)	0.30929 (13)	0.32848 (14)	0.0405 (7)
C38	-0.00786 (16)	0.25520 (15)	0.41683 (13)	0.0410 (8)
C39	-0.02581 (18)	0.19145 (15)	0.43781 (14)	0.0454 (8)
C40	-0.0543 (2)	0.1989 (2)	0.49710 (16)	0.0730 (11)
H40A	-0.0147	0.2184	0.5267	0.110*
H40B	-0.0666	0.1580	0.5116	0.110*
H40C	-0.0998	0.2251	0.4908	0.110*
C41	0.0468 (2)	0.15148 (17)	0.44790 (18)	0.0649 (10)
H41A	0.0641	0.1459	0.4099	0.097*
H41B	0.0359	0.1108	0.4637	0.097*
H41C	0.0864	0.1723	0.4765	0.097*
C42	-0.08738 (19)	0.15999 (16)	0.39233 (16)	0.0546 (9)
H42A	-0.1321	0.1870	0.3839	0.082*
H42B	-0.1014	0.1204	0.4086	0.082*
H42C	-0.0683	0.1524	0.3553	0.082*
C43	-0.20380 (15)	0.10628 (12)	0.08782 (13)	0.0328 (7)
C44	-0.20574 (18)	0.12848 (14)	0.03058 (13)	0.0426 (7)
H44	-0.1603	0.1301	0.0149	0.051*
C45	-0.2733 (2)	0.14838 (14)	-0.00416 (15)	0.0527 (9)
H45	-0.2739	0.1640	-0.0433	0.063*
C46	-0.3394(2)	0.14545 (15)	0.01823 (17)	0.0555 (10)
H46	-0.3856	0.1592	-0.0055	0.067*
C47	-0.33912(17)	0.12266 (15)	0.07501 (15)	0.0479 (8)
H47	-0.3851	0.1205	0.0900	0.057*
C48	-0.27131(15)	0 10290 (13)	0 11028 (13)	0.0364(7)
C49	-0.32059(17)	0.07264 (15)	0 20256 (16)	0.0301(7)
C50	-0.29353(17)	0.07201(15) 0.05719(15)	0.26230(15) 0.26818(15)	0.0465(8)
C51	-0.20843(18)	0.03(1)(10)	0.28585 (17)	0.0646(10)
H51A	-0.1931	0.0131	0.2611	0.097*
H51R	-0.1962	0.0341	0.3280	0.097*
H51C	-0.1812	0.0845	0.2798	0.097*
C52	-0.3360(2)	-0.00087(18)	0.2830 (2)	0.0771(11)
Н524	-0.3908	0.0066	0.2731	0.110*
H52R	-0.3214	-0.0102	0.3257	0.110*
H52D	-0.3229	-0.0361	0.3237	0.110*
C53	-0.3165(2)	0.0301	0.2370 0.30420(17)	0.110 0.0674(10)
U55 Н53 Л	-0.2882	0.1/188	0.2067	0.0074(10)
H53R	-0.3051	0.1015	0.2767	0.101
H53C	-0.3710	0.1015	0.2921	0.101
C54	0.3710 0.04742 (14)	-0.14673(11)	0.2921 0.16275 (12)	0.0264 (6)
C55	0.04742(14) 0.08766(15)	-0.16758(12)	0.10275(12) 0.12005(12)	0.0204(0)
UJJ H55	0.00700(13)	-0.1380	0.12003 (12)	0.037*
1155 C56	0.111/	-0.22082(12)	0.0700	0.037
0.50	0.09408 (10)	0.22982 (13)	0.10731 (13)	0.0302(7)

Н56	0.1218	-0.2428	0.0777	0.043*	
C57	0.05944 (15)	-0.27283(12)	0.13851 (13)	0.0360 (7)	
H57	0.0642	-0.3159	0.1308	0.043*	
C58	0.01841 (16)	-0.25414 (12)	0.18040 (13)	0.0342 (7)	
H58	-0.0057	-0.2842	0.2010	0.041*	
C59	0.01175 (14)	-0.19128 (12)	0.19310 (12)	0.0280 (6)	
C60	-0.08233 (19)	-0.20026 (15)	0.26013 (15)	0.0465 (8)	
C61	-0.1158 (2)	-0.16870 (16)	0.30932 (16)	0.0539 (9)	
C62	-0.1268 (3)	-0.2177 (2)	0.3550 (2)	0.0813 (9)	0.84
H62A	-0.0777	-0.2361	0.3722	0.122*	0.84
H62B	-0.1610	-0.2501	0.3354	0.122*	0.84
H62C	-0.1490	-0.1984	0.3868	0.122*	0.84
C63	-0.0624 (3)	-0.1185 (3)	0.3436 (2)	0.0813 (9)	0.84
H63A	-0.0826	-0.1048	0.3786	0.122*	0.84
H63B	-0.0593	-0.0830	0.3172	0.122*	0.84
H63C	-0.0117	-0.1362	0.3566	0.122*	0.84
C64	-0.1933 (3)	-0.1425 (3)	0.2813 (2)	0.0813 (9)	0.84
H64A	-0.2248	-0.1757	0.2602	0.122*	0.84
H64B	-0.1868	-0.1096	0.2529	0.122*	0.84
H64C	-0.2180	-0.1254	0.3127	0.122*	0.84
C62A	-0.0701 (13)	-0.1780 (13)	0.3665 (7)	0.0813 (9)	0.16
H62D	-0.0323	-0.1447	0.3746	0.122*	0.16
H62E	-0.0444	-0.2182	0.3673	0.122*	0.16
H62F	-0.1022	-0.1774	0.3970	0.122*	0.16
C63A	-0.1457 (16)	-0.1036 (9)	0.2853 (11)	0.0813 (9)	0.16
H63D	-0.1841	-0.0891	0.3077	0.122*	0.16
H63E	-0.1684	-0.1069	0.2429	0.122*	0.16
H63F	-0.1035	-0.0740	0.2904	0.122*	0.16
C64A	-0.1985 (10)	-0.2025 (12)	0.2985 (11)	0.0813 (9)	0.16
H64D	-0.1918	-0.2476	0.2987	0.122*	0.16
H64E	-0.2280	-0.1894	0.2599	0.122*	0.16
H64F	-0.2256	-0.1906	0.3305	0.122*	0.16
C65	0.08101 (17)	0.25233 (16)	-0.01462 (15)	0.0504 (8)	
H65A	0.0482	0.2891	-0.0136	0.061*	
H65B	0.0489	0.2184	-0.0348	0.061*	
C66	0.14054 (18)	0.26764 (15)	-0.05033 (15)	0.0495 (8)	
H66A	0.1170	0.2878	-0.0883	0.059*	
H66B	0.1777	0.2969	-0.0278	0.059*	
C67	0.23079 (19)	0.22303 (17)	-0.10065 (15)	0.0551 (9)	
H67A	0.2700	0.2527	-0.0815	0.066*	
H67B	0.2044	0.2414	-0.1387	0.066*	
C68	0.26767 (19)	0.16304 (17)	-0.11297 (14)	0.0529 (9)	
H68A	0.2285	0.1324	-0.1300	0.063*	
H68B	0.3014	0.1699	-0.1422	0.063*	
C69	0.35155 (18)	0.08645 (16)	-0.06728 (14)	0.0471 (8)	
H69A	0.3747	0.0910	-0.1033	0.057*	
H69B	0.3173	0.0500	-0.0730	0.057*	
C70	0.41275 (17)	0.07682 (15)	-0.01301 (14)	0.0436 (8)	
H70A	0.4443	0.0409	-0.0202	0.052*	

H70B	0.4459	0.1139	-0.0074	0.052*
C71	0.35853 (17)	0.00097 (13)	0.04389 (13)	0.0387 (7)
H71A	0.4034	-0.0254	0.0582	0.046*
H71B	0.3360	-0.0128	0.0030	0.046*
C72	0.30177 (17)	-0.00817 (13)	0.08382 (13)	0.0401 (7)
H72A	0.2940	-0.0531	0.0900	0.048*
H72B	0.3203	0.0112	0.1232	0.048*
C73	0.17263 (18)	0.00352 (15)	0.08625 (15)	0.0482 (8)
H73A	0.1859	0.0159	0.1288	0.058*
H73B	0.1649	-0.0420	0.0846	0.058*
C74	0.10171 (18)	0.03529 (16)	0.05767 (15)	0.0501 (9)
H74A	0.0910	0.0263	0.0143	0.060*
H74B	0.0585	0.0200	0.0752	0.060*
C75	0.04258 (18)	0.13371 (17)	0.04986 (17)	0.0559 (9)
H75A	0.0013	0.1137	0.0665	0.067*
H75B	0.0280	0.1341	0.0058	0.067*
C76	0.05434 (19)	0.19858 (18)	0.07278 (18)	0.0610 (10)
H76A	0.0055	0.2212	0.0635	0.073*
H76B	0.0700	0.1973	0.1168	0.073*
C77	0.13663 (19)	0.28846 (16)	0.08408 (16)	0.0559 (9)
H77A	0.0917	0.3073	0.0967	0.067*
H77B	0.1577	0.3194	0.0594	0.067*
C78	0.19482 (19)	0.27468 (17)	0.13848 (15)	0.0542 (9)
H78A	0.2044	0.3123	0.1638	0.065*
H78B	0.1761	0.2415	0.1621	0.065*
C79	0.32435 (17)	0.25103 (15)	0.16984 (13)	0.0436 (8)
H79A	0.3122	0.2203	0.1990	0.052*
H79B	0.3327	0.2918	0.1901	0.052*
C80	0.39374 (16)	0.23183 (14)	0.14824 (14)	0.0401 (7)
H80A	0.4032	0.2603	0.1163	0.048*
H80B	0.4379	0.2338	0.1814	0.048*
C81	0.45188 (16)	0.14729 (13)	0.10798 (15)	0.0409 (7)
H81A	0.4961	0.1539	0.1404	0.049*
H81B	0.4610	0.1697	0.0720	0.049*
C82	0.44180 (16)	0.07922 (13)	0.09470 (14)	0.0405 (7)
H82A	0.4907	0.0617	0.0883	0.049*
H82B	0.4280	0.0581	0.1298	0.049*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe	0.01704 (19)	0.0154 (2)	0.0283 (2)	-0.00017 (14)	0.00341 (15)	-0.00347 (14)
Κ	0.0293 (3)	0.0334 (4)	0.0363 (3)	-0.0034 (3)	0.0036 (3)	0.0028 (3)
S	0.0485 (5)	0.0474 (5)	0.0400 (4)	-0.0011 (4)	0.0204 (4)	-0.0003 (3)
01	0.0568 (17)	0.0754 (19)	0.135 (3)	0.0238 (15)	0.0276 (17)	0.0608 (19)
O2	0.0808 (18)	0.0550 (15)	0.0675 (16)	-0.0020 (13)	0.0252 (14)	-0.0329 (13)
O3	0.0221 (13)	0.138 (3)	0.0820 (19)	0.0016 (14)	0.0007 (12)	0.0137 (17)
O4	0.112 (2)	0.0556 (18)	0.141 (3)	-0.0473 (17)	0.083 (2)	-0.0369 (18)

O5	0.0377 (12)	0.0403 (12)	0.0470 (12)	-0.0046 (10)	0.0035 (10)	0.0119 (9)
O6	0.0394 (12)	0.0632 (15)	0.0381 (12)	0.0054 (11)	0.0077 (10)	0.0104 (10)
O7	0.0401 (12)	0.0375 (11)	0.0389 (11)	-0.0100 (9)	0.0130 (9)	0.0057 (9)
08	0.0331 (12)	0.0490 (14)	0.0616 (14)	-0.0078 (10)	0.0120 (10)	0.0029 (11)
09	0.0397 (12)	0.0452 (12)	0.0368 (11)	0.0075 (10)	0.0014 (9)	-0.0046 (9)
O10	0.0298 (10)	0.0298 (11)	0.0463 (12)	-0.0031 (8)	0.0023 (9)	-0.0008 (9)
N1	0.0207 (11)	0.0191 (12)	0.0283 (11)	-0.0018 (9)	0.0046 (9)	-0.0009 (9)
N2	0.0230 (12)	0.0188 (12)	0.0320 (12)	0.0005 (9)	0.0027 (9)	-0.0023 (9)
N3	0.0236 (12)	0.0189 (12)	0.0372 (13)	-0.0006 (9)	0.0027 (10)	-0.0044 (9)
N4	0.0220 (11)	0.0183 (11)	0.0307 (12)	0.0012 (9)	0.0054 (9)	-0.0031 (9)
N5	0.0307 (13)	0.0445 (15)	0.0372 (13)	0.0070 (11)	0.0072 (11)	0.0071 (11)
N6	0.090 (2)	0.0294 (15)	0.0535 (17)	-0.0027 (14)	0.0303 (16)	-0.0174 (12)
N7	0.0185 (12)	0.0541 (16)	0.0495 (16)	0.0050 (11)	-0.0011 (11)	-0.0054 (12)
N8	0.0442 (14)	0.0206 (12)	0.0445 (14)	-0.0033 (11)	0.0137 (12)	-0.0002 (10)
N9	0.0373 (14)	0.0464 (16)	0.0503 (16)	0.0062 (12)	0.0031 (12)	0.0006 (12)
N10	0.0276 (12)	0.0309 (13)	0.0435 (14)	-0.0035 (10)	0.0060 (11)	0.0038 (10)
C1	0.0226 (14)	0.0196 (14)	0.0278 (14)	-0.0014 (11)	0.0074 (11)	0.0004 (11)
C2	0.0312 (15)	0.0203 (14)	0.0352 (15)	0.0030 (12)	0.0055 (12)	0.0017 (11)
C3	0.0236 (14)	0.0259 (15)	0.0365 (15)	0.0027 (12)	0.0012 (12)	0.0002 (12)
C4	0.0233 (14)	0.0224 (14)	0.0266 (14)	0.0007 (11)	0.0044 (11)	0.0010 (11)
C5	0.0223 (13)	0.0265 (15)	0.0260 (14)	-0.0017 (11)	0.0040 (11)	-0.0004 (11)
C6	0.0234 (14)	0.0234 (14)	0.0304 (14)	-0.0010 (11)	0.0031 (11)	0.0007 (11)
C7	0.0264 (15)	0.0259 (15)	0.0408 (16)	-0.0037 (12)	-0.0012 (12)	-0.0038 (12)
C8	0.0327 (16)	0.0224 (15)	0.0422 (17)	-0.0057 (13)	0.0020 (13)	-0.0089 (12)
C9	0.0280 (15)	0.0216 (14)	0.0295 (14)	-0.0009 (11)	0.0056 (11)	-0.0024 (11)
C10	0.0299 (15)	0.0191 (14)	0.0361 (15)	0.0004 (12)	0.0085 (12)	-0.0058 (11)
C11	0.0278 (15)	0.0217 (15)	0.0405 (16)	0.0005 (12)	0.0042 (12)	-0.0066 (12)
C12	0.0349 (17)	0.0218 (15)	0.069 (2)	0.0075 (13)	-0.0017 (15)	-0.0131 (14)
C13	0.0281 (16)	0.0302 (17)	0.070 (2)	0.0088 (13)	-0.0089 (15)	-0.0117 (15)
C14	0.0229 (14)	0.0239 (15)	0.0426 (16)	0.0026 (12)	0.0015 (12)	-0.0045 (12)
C15	0.0224 (14)	0.0272 (15)	0.0347 (15)	0.0001 (12)	0.0035 (12)	-0.0031 (12)
C16	0.0197 (13)	0.0236 (15)	0.0310 (14)	-0.0022 (11)	0.0064 (11)	-0.0020 (11)
C17	0.0229 (14)	0.0282 (15)	0.0364 (15)	-0.0027 (12)	0.0005 (12)	-0.0070 (12)
C18	0.0285 (15)	0.0206 (14)	0.0376 (15)	-0.0036 (12)	0.0040 (12)	-0.0069 (12)
C19	0.0237 (14)	0.0206 (14)	0.0286 (14)	-0.0035 (11)	0.0073 (11)	-0.0003 (11)
C20	0.0246 (14)	0.0179 (13)	0.0292 (14)	-0.0014 (11)	0.0065 (11)	-0.0005 (11)
C21	0.0231 (14)	0.0167 (13)	0.0373 (15)	0.0009 (11)	0.0034 (12)	-0.0031 (11)
C22	0.0279 (15)	0.0236 (15)	0.0402 (16)	-0.0021 (12)	0.0047 (12)	-0.0021 (12)
C23	0.0265 (16)	0.0268 (16)	0.0554 (19)	-0.0025 (12)	0.0112 (14)	-0.0032 (13)
C24	0.0191 (14)	0.0331 (16)	0.058 (2)	-0.0006 (12)	-0.0002 (14)	-0.0050 (14)
C25	0.0306 (16)	0.0340 (16)	0.0399 (16)	0.0034 (13)	-0.0028 (13)	0.0003 (13)
C26	0.0295 (15)	0.0260 (15)	0.0366 (16)	0.0014 (12)	0.0051 (13)	-0.0021 (12)
C27	0.0391 (18)	0.0358 (17)	0.058 (2)	0.0070 (15)	0.0095 (15)	0.0110 (15)
C28	0.058 (2)	0.045 (2)	0.054 (2)	0.0021 (17)	0.0192 (17)	0.0142 (16)
C29	0.129 (4)	0.070	0.092	0.027 (3)	0.044 (3)	0.037 (2)
C30	0.065 (2)	0.070 (3)	0.091 (3)	0.011 (2)	0.041 (2)	0.022 (2)
C31	0.103 (3)	0.070	0.092	-0.032 (2)	0.039 (3)	-0.017 (2)
C32	0.0243 (14)	0.0227 (15)	0.0475 (17)	0.0019 (12)	-0.0004 (12)	-0.0086 (13)
C33	0.0349 (16)	0.0241 (16)	0.058 (2)	-0.0007 (13)	0.0056 (14)	-0.0039 (14)

C34	0.0384 (18)	0.0236 (16)	0.072 (2)	-0.0032 (13)	-0.0015 (16)	-0.0044 (15)
C35	0.048 (2)	0.0244 (17)	0.078 (3)	0.0039 (14)	0.0018 (18)	-0.0190 (17)
C36	0.060 (2)	0.0347 (19)	0.063 (2)	0.0000 (16)	0.0127 (17)	-0.0220 (17)
C37	0.0410 (17)	0.0284 (17)	0.0508 (19)	-0.0020 (13)	0.0055 (14)	-0.0133 (14)
C38	0.0303 (16)	0.047 (2)	0.0444 (18)	0.0055 (14)	0.0047 (14)	-0.0183 (15)
C39	0.0434 (18)	0.051 (2)	0.0429 (18)	-0.0002 (15)	0.0113 (14)	-0.0109 (15)
C40	0.089 (3)	0.084 (3)	0.053 (2)	-0.005 (2)	0.028 (2)	-0.012 (2)
C41	0.059 (2)	0.059 (2)	0.072 (3)	0.0127 (19)	0.0016 (19)	0.0052 (19)
C42	0.050 (2)	0.055 (2)	0.062 (2)	-0.0098 (17)	0.0176 (17)	-0.0183 (17)
C43	0.0290 (15)	0.0209 (15)	0.0449 (17)	0.0026 (12)	-0.0028 (13)	-0.0075 (12)
C44	0.0448 (19)	0.0342 (17)	0.0443 (18)	0.0010 (14)	-0.0036 (15)	-0.0031 (14)
C45	0.063 (2)	0.0356 (18)	0.050 (2)	0.0066 (17)	-0.0154 (18)	0.0010 (15)
C46	0.049 (2)	0.0381 (19)	0.066 (2)	0.0114 (16)	-0.0240 (18)	-0.0083 (17)
C47	0.0306 (17)	0.0455 (19)	0.062 (2)	0.0097 (14)	-0.0064 (15)	-0.0137 (16)
C48	0.0276 (16)	0.0302 (16)	0.0472 (18)	0.0038 (12)	-0.0039 (13)	-0.0122 (13)
C49	0.0242 (18)	0.051 (2)	0.068 (2)	-0.0001 (14)	0.0042 (16)	-0.0089 (17)
C50	0.0284 (16)	0.052 (2)	0.060 (2)	0.0016 (14)	0.0097 (15)	0.0012 (16)
C51	0.0372 (19)	0.097 (3)	0.058 (2)	0.0068 (19)	0.0047 (16)	0.012 (2)
C52	0.052 (2)	0.059 (2)	0.110 (3)	-0.0007 (19)	0.020 (2)	0.009 (2)
C53	0.075 (3)	0.063 (2)	0.066 (2)	0.009 (2)	0.018 (2)	-0.0035 (19)
C54	0.0214 (13)	0.0196 (14)	0.0354 (15)	0.0000 (11)	-0.0018 (12)	-0.0002 (11)
C55	0.0271 (15)	0.0257 (15)	0.0402 (16)	-0.0027 (12)	0.0053 (12)	-0.0039 (12)
C56	0.0332 (16)	0.0272 (16)	0.0478 (18)	0.0042 (13)	0.0062 (13)	-0.0094 (13)
C57	0.0332 (16)	0.0178 (14)	0.0523 (18)	0.0050 (12)	-0.0040 (14)	-0.0042 (13)
C58	0.0360 (16)	0.0190 (15)	0.0440 (17)	-0.0003 (12)	-0.0019 (13)	0.0046 (12)
C59	0.0250 (14)	0.0230 (15)	0.0333 (15)	0.0003 (11)	-0.0014 (12)	0.0006 (11)
C60	0.054 (2)	0.0323 (19)	0.058 (2)	-0.0016 (16)	0.0210 (17)	0.0100 (15)
C61	0.064 (2)	0.045 (2)	0.060 (2)	0.0131 (17)	0.0294 (18)	0.0136 (16)
C62	0.104 (2)	0.081 (2)	0.0676 (18)	0.0104 (18)	0.0387 (17)	0.0036 (16)
C63	0.104 (2)	0.081 (2)	0.0676 (18)	0.0104 (18)	0.0387 (17)	0.0036 (16)
C64	0.104 (2)	0.081 (2)	0.0676 (18)	0.0104 (18)	0.0387 (17)	0.0036 (16)
C62A	0.104 (2)	0.081(2)	0.0676 (18)	0.0104 (18)	0.0387 (17)	0.0036 (16)
C63A	0.104 (2)	0.081(2)	0.0676 (18)	0.0104 (18)	0.0387 (17)	0.0036 (16)
C64A	0.104 (2)	0.081(2)	0.0676 (18)	0.0104 (18)	0.0387 (17)	0.0036 (16)
C65	0.0354(18)	0.051 (2)	0.059 (2)	0.0097 (15)	-0.0065(15)	0.0035 (16)
C66	0.0473(19)	0.0405(19)	0.053(2)	-0.0019(16)	-0.0111(16)	0.0119(15)
C67	0.047(2)	0.062 (2)	0.053(2)	-0.0092(18)	0.0060 (16)	0.0286(17)
C68	0.0452(19)	0.002(2)	0.0386(18)	-0.0037(18)	0.0000 (10) 0.0109 (15)	0.0280(17) 0.0184(17)
C69	0.0448(19)	0.076(2)	0.0300(10) 0.0444(18)	-0.0059(16)	0.0184(15)	0.0101(17) 0.0014(15)
C70	0.0325(17)	0.026(2)	0.0537(19)	-0.0012(14)	0.0133 (14)	0.00011(10)
C71	0.0320(17) 0.0441(18)	0.0269(15)	0.0007(17)	-0.0032(13)	0.0058 (14)	-0.0008(13)
C72	0.0511(19)	0.0269(16)	0.0412(17)	-0.0066(14)	0.0050(11)	0.00000(13)
C73	0.056(2)	0.0200(10) 0.0424(19)	0.0526(19)	-0.0136(16)	0.0000(12) 0.0281(17)	0.0031(15) 0.0075(15)
C74	0.0439 (19)	0.059 (2)	0.052 (2)	-0.0235(17)	0.0217 (16)	-0.0028(16)
C75	0.0327(18)	0.065(2)	0.070(2)	-0.0063(17)	0.0125 (16)	0.0089(19)
C76	0.0327(19)	0.075(3)	0.073(2)	0.0097 (18)	0.0201 (18)	0.004 (2)
C77	0.047(2)	0.075(3)	0.063(2)	0.0077(10)	0.0031 (17)	-0.0108(17)
C78	0.050(2)	0.067(2)	0.000(2)	0.0131(17)	0.0098 (16)	-0.0108(17)
C79	0.030(2)	0.0465 (19)	0.0340(16)	0.0131(17) 0.0014(15)	0.0003(14)	-0.0049(14)
212		0.0100 (17)	0.0010 (10)	0.0011(10)	0.0000 (11)	0.0017(11)

C80	0.0374 (17)	0.0359 (17)	0.0440 (17)	-0.0052 (14)	0.0000 (14)	-0.0067 (13)
C81	0.0258 (15)	0.0361 (17)	0.058 (2)	0.0001 (13)	-0.0002 (14)	0.0008 (14)
C82	0.0293 (16)	0.0355 (17)	0.0530 (19)	0.0041 (13)	-0.0024 (14)	0.0035 (14)
Geometric para	meters (Å, °)					
Fe—N1		2.087 (2)	C36–	–C37	1.38	9 (4)
Fe—N3		2.099 (2)	C36–	–Н36	0.95	00
Fe—N4		2.104 (2)	C38–	-C39	1.50	8 (5)
Fe—N2		2.115 (2)	C39–	-C42	1.52	6 (4)
Fe—S		2.3123 (8)	C39–	-C40	1.53	7 (5)
К—Об		2.797 (2)	C39–	C41	1.54	2 (5)
K—O8		2.799 (2)	C40-	-H40A	0.98	00
К—О7		2.831 (2)	C40–	-H40B	0.98	00
К—О10		2.8402 (19)	C40-	-H40C	0.98	00
К—О5		2.846 (2)	C41–	-H41A	0.98	00
К—О9		2.848 (2)	C41–	-H41B	0.98	00
K—N9		3.018 (3)	C41–	-H41C	0.98	00
K—N10		3.052 (2)	C42-	-H42A	0.98	00
O1—C27		1.212 (4)	C42-	-H42B	0.98	00
O2—C38		1.213 (4)	C42–	-H42C	0.98	00
O3—C49		1.221 (4)	C43–	-C44	1.38	3 (4)
O4—C60		1.212 (4)	C43–	-C48	1.40	0 (4)
O5—C67		1.419 (4)	C44—	-C45	1.38	7 (4)
O5—C66		1.421 (4)	C44—	-H44	0.95	00
O6—C68		1.405 (4)	C45–	-C46	1.37	5 (5)
O6—C69		1.414 (4)	C45–	-H45	0.95	00
O7—C72		1.417 (3)	C46–	C47	1.38	2 (5)
O7—C73		1.421 (3)	C46–	-H46	0.95	00
O8—C75		1.410 (4)	C47—	-C48	1.39	5 (4)
O8—C74		1.419 (4)	C47—	–H47	0.95	00
O9—C79		1.418 (3)	C49–	-C50	1.52	0 (5)
O9—C78		1.422 (4)	C50–	-C51	1.52	3 (4)
O10—C80		1.420 (3)	C50–	-C53	1.53	0 (5)
O10-C81		1.433 (3)	C50–	-C52	1.53	3 (5)
N1-C4		1.372 (3)	C51-	-H51A	0.98	00
N1-C1		1.376 (3)	C51–	-H51B	0.98	00
N2—C6		1.365 (3)	C51–	-H51C	0.98	00
N2—C9		1.376 (3)	C52—	-H52A	0.98	00
N3—C11		1.372 (3)	C52–	-H52B	0.98	00
N3—C14		1.376 (3)	C52–	-H52C	0.98	00
N4—C19		1.371 (3)	C53–	-H53A	0.98	00
N4—C16		1.372 (3)	C53–	-H53B	0.98	00
N5-C27		1.357 (4)	C53–	-H53C	0.98	00
N5-C26		1.411 (3)	C54–	-C55	1.38	8 (4)
N5—HN5		0.8800	C54–	-C59	1.40	3 (4)
N6-C38		1.353 (4)	C55–	-C56	1.38	1 (4)
N6-C37		1.414 (4)	C55–	-H55	0.95	00
N6—HN6		0.8800	C56–	-C57	1.38	2 (4)

N7—C49	1.361 (4)	С56—Н56	0.9500
N7—C48	1.401 (4)	C57—C58	1.368 (4)
N7—HN7	0.8800	С57—Н57	0.9500
N8—C60	1.347 (4)	C58—C59	1.394 (4)
N8—C59	1.419 (3)	C58—H58	0.9500
N8—HN8	0.8800	C60—C61	1.524 (5)
N9—C65	1.473 (4)	C61—C62A	1.418 (15)
N9—C77	1.474 (4)	C61—C62	1.520 (6)
N9—C76	1.482 (4)	C61—C64	1.527 (6)
N10-C70	1.461 (4)	C61—C63	1.555 (6)
N10—C71	1.470 (4)	C61—C63A	1.563 (15)
N10—C82	1.475 (4)	C61—C64A	1.630 (16)
C1—C20	1.402 (4)	C62—H62A	0.9800
C1—C2	1.444 (4)	С62—Н62В	0.9800
C2—C3	1.352 (4)	C62—H62C	0.9800
С2—Н2	0.9500	С63—Н63А	0.9800
C3—C4	1.445 (4)	С63—Н63В	0.9800
С3—Н3	0.9500	С63—Н63С	0.9800
C4—C5	1.402 (4)	C64—H64A	0.9800
C5—C6	1.401 (4)	С64—Н64В	0.9800
C5—C21	1.503 (4)	C64—H64C	0.9800
C6—C7	1.448 (4)	C62A—H62D	0.9800
С7—С8	1.346 (4)	С62А—Н62Е	0.9800
С7—Н7	0.9500	C62A—H62F	0.9800
C8—C9	1.438 (4)	C63A—H63D	0.9800
С8—Н8	0.9500	С63А—Н63Е	0.9800
C9—C10	1.399 (4)	C63A—H63F	0.9800
C10—C11	1.403 (4)	C64A—H64D	0.9800
C10—C32	1.503 (4)	С64А—Н64Е	0.9800
C11—C12	1.435 (4)	C64A—H64F	0.9800
C12—C13	1.347 (4)	C65—C66	1.493 (5)
C12—H12	0.9500	С65—Н65А	0.9900
C13—C14	1.442 (4)	С65—Н65В	0.9900
C13—H13	0.9500	С66—Н66А	0.9900
C14—C15	1.407 (4)	С66—Н66В	0.9900
C15—C16	1.397 (4)	C67—C68	1.501 (5)
C15—C43	1.508 (4)	С67—Н67А	0.9900
C16—C17	1.441 (4)	С67—Н67В	0.9900
C17—C18	1.353 (4)	C68—H68A	0.9900
С17—Н17	0.9500	С68—Н68В	0.9900
C18—C19	1.440 (4)	C69—C70	1.508 (4)
C18—H18	0.9500	С69—Н69А	0.9900
C19—C20	1.410 (4)	С69—Н69В	0.9900
C20—C54	1.500 (3)	С70—Н70А	0.9900
C21—C22	1.388 (4)	С70—Н70В	0.9900
C21—C26	1.401 (4)	C71—C72	1.497 (4)
C22—C23	1.381 (4)	C71—H71A	0.9900
C22—H22	0.9500	C/I—H71B	0.9900
C23—C24	1.387 (4)	C/2—H72A	0.9900

С23—Н23	0.9500	С72—Н72В	0.9900
C24—C25	1.375 (4)	C73—C74	1.485 (5)
C24—H24	0.9500	С73—Н73А	0.9900
C25—C26	1.390 (4)	С73—Н73В	0.9900
С25—Н25	0.9500	C74—H74A	0.9900
C27—C28	1.530 (4)	C74—H74B	0.9900
C28—C30	1.514 (5)	C75—C76	1.493 (5)
C28—C29	1.514 (5)	С75—Н75А	0.9900
C28—C31	1.525 (5)	С75—Н75В	0.9900
С29—Н29А	0.9800	С76—Н76А	0.9900
С29—Н29В	0.9800	С76—Н76В	0.9900
С29—Н29С	0.9800	C77—C78	1.495 (5)
C30—H30A	0.9800	С77—Н77А	0.9900
C30—H30B	0.9800	С77—Н77В	0.9900
С30—Н30С	0.9800	C78—H78A	0.9900
C31—H31A	0.9800	C78—H78B	0.9900
C31—H31B	0.9800	C79—C80	1.479 (4)
C31—H31C	0.9800	С79—Н79А	0.9900
C32—C33	1.379 (4)	С79—Н79В	0.9900
C32—C37	1.404 (4)	C80—H80A	0.9900
C33—C34	1.394 (4)	C80—H80B	0.9900
С33—Н33	0.9500	C81—C82	1.501 (4)
C34—C35	1.369 (5)	C81—H81A	0.9900
С34—Н34	0.9500	C81—H81B	0.9900
C35—C36	1.383 (5)	C82—H82A	0.9900
С35—Н35	0.9500	C82—H82B	0.9900
N1—Fe—N3	151.92 (8)	H41A—C41—H41B	109.5
N1—Fe—N4	87.11 (8)	C39—C41—H41C	109.5
N3—Fe—N4	86.61 (8)	H41A—C41—H41C	109.5
N1—Fe—N2	86.80 (8)	H41B—C41—H41C	109.5
N3—Fe—N2	85.43 (8)	C39—C42—H42A	109.5
N4—Fe—N2	150.72 (8)	C39—C42—H42B	109.5
N1—Fe—S	100.78 (6)	H42A—C42—H42B	109.5
N3—Fe—S	107.30 (6)	C39—C42—H42C	109.5
N4—Fe—S	103.24 (6)	H42A—C42—H42C	109.5
N2—Fe—S	106.03 (6)	H42B—C42—H42C	109.5
O6—K—O8	129.28 (7)	C44—C43—C48	119.3 (3)
O6—K—O7	93.90 (6)	C44—C43—C15	119.6 (3)
O8—K—O7	60.52 (6)	C48—C43—C15	120.7 (3)
O6—K—O10	97.01 (6)	C43—C44—C45	120.8 (3)
O8—K—O10	128.20 (6)	C43—C44—H44	119.6
O7—K—O10	99.85 (6)	C45—C44—H44	119.6
O6—K—O5	59.85 (6)	C46—C45—C44	119.8 (3)
O8—K—O5	94.90 (6)	C46—C45—H45	120.1
O7—K—O5	121.20 (6)	C44—C45—H45	120.1
O10—K—O5	132.29 (6)	C45—C46—C47	120.6 (3)
O6—K—O9			
	123.99 (7)	C45—C46—H46	119.7
08—K—09	123.99 (7) 100.69 (6)	C45—C46—H46 C47—C46—H46	119.7 119.7

О10—К—О9	59.65 (5)	C46—C47—H47	120.0
O5—K—O9	97.23 (6)	C48—C47—H47	120.0
O6—K—N9	120.80 (7)	C47—C48—C43	119.7 (3)
O8—K—N9	59.74 (7)	C47—C48—N7	123.2 (3)
O7—K—N9	120.11 (7)	C43—C48—N7	117.1 (2)
O10—K—N9	119.64 (6)	O3—C49—N7	122.4 (3)
O5—K—N9	61.11 (7)	O3—C49—C50	121.0 (3)
O9—K—N9	60.27 (6)	N7—C49—C50	116.6 (3)
O6—K—N10	59.46 (6)	C49—C50—C51	114.6 (3)
O8—K—N10	120.43 (6)	C49—C50—C53	106.9 (3)
O7—K—N10	60.09 (6)	C51—C50—C53	109.4 (3)
O10—K—N10	59.92 (6)	C49—C50—C52	108.2 (3)
O5—K—N10	119.18 (6)	C51—C50—C52	109.3 (3)
O9—K—N10	119.30 (6)	C53—C50—C52	108.2 (3)
N9—K—N10	179.56 (7)	C50—C51—H51A	109.5
C67—O5—C66	111.9 (2)	С50—С51—Н51В	109.5
С67—О5—К	111.50 (17)	H51A—C51—H51B	109.5
С66—О5—К	112.12 (17)	С50—С51—Н51С	109.5
C68—O6—C69	112.4 (2)	H51A—C51—H51C	109.5
С68—О6—К	118.13 (18)	H51B-C51-H51C	109.5
С69—О6—К	118.42 (17)	C50—C52—H52A	109.5
C72—O7—C73	111.1 (2)	С50—С52—Н52В	109.5
С72—О7—К	112.16 (15)	H52A—C52—H52B	109.5
С73—О7—К	112.26 (17)	С50—С52—Н52С	109.5
C75—O8—C74	113.2 (2)	H52A—C52—H52C	109.5
С75—О8—К	119.38 (18)	H52B—C52—H52C	109.5
С74—О8—К	115.16 (16)	С50—С53—Н53А	109.5
С79—О9—С78	112.2 (2)	С50—С53—Н53В	109.5
С79—О9—К	114.18 (16)	H53A—C53—H53B	109.5
С78—О9—К	114.18 (18)	С50—С53—Н53С	109.5
C80—O10—C81	111.9 (2)	H53A—C53—H53C	109.5
С80—О10—К	114.30 (15)	H53B—C53—H53C	109.5
С81—О10—К	116.10 (16)	C55—C54—C59	117.8 (2)
C4—N1—C1	106.5 (2)	C55—C54—C20	119.7 (2)
C4—N1—Fe	127.09 (16)	C59—C54—C20	122.4 (2)
C1—N1—Fe	124.55 (16)	C56—C55—C54	122.4 (3)
C6—N2—C9	106.5 (2)	С56—С55—Н55	118.8
C6—N2—Fe	126.43 (16)	С54—С55—Н55	118.8
C9—N2—Fe	124.98 (16)	C55—C56—C57	118.7 (3)
C11—N3—C14	105.9 (2)	С55—С56—Н56	120.7
C11—N3—Fe	125.25 (17)	С57—С56—Н56	120.7
C14—N3—Fe	126.77 (16)	C58—C57—C56	120.8 (3)
C19—N4—C16	106.4 (2)	С58—С57—Н57	119.6
C19—N4—Fe	124.68 (16)	С56—С57—Н57	119.6
C16—N4—Fe	127.90 (16)	C57—C58—C59	120.5 (3)
C27—N5—C26	128.4 (2)	С57—С58—Н58	119.7
C27—N5—HN5	115.8	С59—С58—Н58	119.7
C26—N5—HN5	115.8	C58—C59—C54	119.8 (3)
C38—N6—C37	130.1 (3)	C58—C59—N8	121.9 (2)

C38—N6—HN6	114.9	C54—C59—N8	118.2 (2)
C37—N6—HN6	114.9	O4—C60—N8	121.4 (3)
C49—N7—C48	130.7 (2)	O4—C60—C61	120.4 (3)
C49—N7—HN7	114.6	N8—C60—C61	118.3 (3)
C48—N7—HN7	114.6	C62A—C61—C62	53.2 (11)
C60—N8—C59	127.6 (2)	C62A—C61—C60	111.9 (10)
C60—N8—HN8	116.2	C62—C61—C60	108.2 (3)
C59—N8—HN8	116.2	C62A—C61—C64	139.7 (10)
C65—N9—C77	109.9 (3)	C62—C61—C64	108.6 (4)
C65—N9—C76	110.3 (3)	C60—C61—C64	108.0 (3)
C77—N9—C76	109.8 (3)	C62A—C61—C63	55.9 (12)
С65—N9—К	107.88 (18)	C62—C61—C63	106.5 (4)
С77—N9—К	109.75 (18)	C60—C61—C63	112.9 (3)
C76—N9—K	109.17 (19)	C64—C61—C63	112.5 (4)
C70—N10—C71	109.9 (2)	C62A—C61—C63A	123.4 (15)
C70—N10—C82	110.5 (2)	C62—C61—C63A	141.4 (9)
C71—N10—C82	109.3 (2)	C60—C61—C63A	107.4 (9)
C70—N10—K	109.76 (16)	C64—C61—C63A	45.2 (10)
С71—N10—К	108.41 (16)	C63—C61—C63A	72.1 (11)
C82—N10—K	108.92 (16)	C62A—C61—C64A	115.5 (14)
N1—C1—C20	125.1 (2)	C62—C61—C64A	64.1 (9)
N1—C1—C2	109.4 (2)	C60—C61—C64A	99.3 (9)
C20—C1—C2	125.3 (2)	C64—C61—C64A	50.8 (9)
C3—C2—C1	107.4 (2)	C63—C61—C64A	147.6 (9)
С3—С2—Н2	126.3	C63A—C61—C64A	95.9 (13)
C1—C2—H2	126.3	C61—C62—H62A	109.5
C2—C3—C4	106.8 (2)	С61—С62—Н62В	109.5
С2—С3—Н3	126.6	C61—C62—H62C	109.5
С4—С3—Н3	126.6	С61—С63—Н63А	109.5
N1—C4—C5	125.1 (2)	С61—С63—Н63В	109.5
N1—C4—C3	109.9 (2)	С61—С63—Н63С	109.5
C5—C4—C3	125.1 (2)	C61—C64—H64A	109.5
C6—C5—C4	125.8 (2)	C61—C64—H64B	109.5
C6—C5—C21	117.1 (2)	C61—C64—H64C	109.5
C4—C5—C21	117.1 (2)	C61—C62A—H62D	109.5
N2—C6—C5	125.5 (2)	C61—C62A—H62E	109.5
N2—C6—C7	109.6 (2)	H62D—C62A—H62E	109.5
C5—C6—C7	124.8 (2)	C61—C62A—H62F	109.5
C8—C7—C6	107.1 (2)	H62D—C62A—H62F	109.5
С8—С7—Н7	126.4	H62E—C62A—H62F	109.5
С6—С7—Н7	126.4	C61—C63A—H63D	109.5
C7—C8—C9	107.1 (2)	С61—С63А—Н63Е	109.5
С7—С8—Н8	126.5	H63D—C63A—H63E	109.5
С9—С8—Н8	126.5	C61—C63A—H63F	109.5
N2—C9—C10	124.9 (2)	H63D—C63A—H63F	109.5
N2—C9—C8	109.7 (2)	H63E—C63A—H63F	109.5
C10—C9—C8	125.3 (2)	C61—C64A—H64D	109.5
C9—C10—C11	125.5 (2)	С61—С64А—Н64Е	109.5
C9—C10—C32	117.8 (2)	H64D—C64A—H64E	109.5

C11—C10—C32	116.8 (2)	C61—C64A—H64F	109.5
N3—C11—C10	124.9 (2)	H64D—C64A—H64F	109.5
N3—C11—C12	110.2 (2)	H64E—C64A—H64F	109.5
C10—C11—C12	124.8 (2)	N9—C65—C66	113.5 (3)
C13—C12—C11	107.1 (2)	N9—C65—H65A	108.9
C13—C12—H12	126.5	С66—С65—Н65А	108.9
C11—C12—H12	126.5	N9—C65—H65B	108.9
C12—C13—C14	107.2 (2)	С66—С65—Н65В	108.9
С12—С13—Н13	126.4	H65A—C65—H65B	107.7
C14—C13—H13	126.4	O5—C66—C65	109.3 (3)
N3—C14—C15	125.4 (2)	O5—C66—H66A	109.8
N3—C14—C13	109.6 (2)	С65—С66—Н66А	109.8
C15—C14—C13	125.0 (2)	O5—C66—H66B	109.8
C16—C15—C14	125.8 (2)	С65—С66—Н66В	109.8
C16—C15—C43	120.1 (2)	H66A—C66—H66B	108.3
C14—C15—C43	114.1 (2)	O5—C67—C68	109.9 (3)
N4—C16—C15	124.9 (2)	O5—C67—H67A	109.7
N4—C16—C17	109.7 (2)	С68—С67—Н67А	109.7
C15—C16—C17	125.4 (2)	O5—C67—H67B	109.7
C18—C17—C16	107.1 (2)	С68—С67—Н67В	109.7
C18—C17—H17	126.5	H67A—C67—H67B	108.2
С16—С17—Н17	126.5	O6—C68—C67	108.6 (3)
C17—C18—C19	107.0 (2)	O6—C68—H68A	110.0
C17—C18—H18	126.5	С67—С68—Н68А	110.0
С19—С18—Н18	126.5	O6—C68—H68B	110.0
N4—C19—C20	125.0 (2)	C67—C68—H68B	110.0
N4—C19—C18	109.8 (2)	H68A—C68—H68B	108.4
C20—C19—C18	125.0 (2)	O6—C69—C70	109.1 (3)
C1—C20—C19	125.9 (2)	O6—C69—H69A	109.9
C1—C20—C54	115.7 (2)	С70—С69—Н69А	109.9
C19—C20—C54	118.2 (2)	O6—C69—H69B	109.9
C22—C21—C26	118.8 (2)	С70—С69—Н69В	109.9
C22—C21—C5	120.8 (2)	H69A—C69—H69B	108.3
C26—C21—C5	120.4 (2)	N10—C70—C69	113.4 (2)
C23—C22—C21	121.2 (3)	N10-C70-H70A	108.9
C23—C22—H22	119.4	С69—С70—Н70А	108.9
C21—C22—H22	119.4	N10-C70-H70B	108.9
C22—C23—C24	119.3 (3)	С69—С70—Н70В	108.9
С22—С23—Н23	120.4	H70A—C70—H70B	107.7
C24—C23—H23	120.4	N10-C71-C72	112.8 (2)
C25—C24—C23	120.6 (3)	N10-C71-H71A	109.0
C25—C24—H24	119.7	С72—С71—Н71А	109.0
C23—C24—H24	119.7	N10-C71-H71B	109.0
C24—C25—C26	120.2 (3)	С72—С71—Н71В	109.0
С24—С25—Н25	119.9	H71A—C71—H71B	107.8
С26—С25—Н25	119.9	O7—C72—C71	108.2 (2)
C25—C26—C21	119.8 (3)	O7—C72—H72A	110.1
C25—C26—N5	122.6 (2)	C71—C72—H72A	110.1
C21—C26—N5	117.5 (2)	O7—C72—H72B	110.1

O1—C27—N5	121.7 (3)	С71—С72—Н72В	110.1
O1—C27—C28	122.3 (3)	H72A—C72—H72B	108.4
N5-C27-C28	116.0 (3)	O7—C73—C74	109.8 (2)
C30—C28—C29	109.2 (3)	O7—C73—H73A	109.7
C30—C28—C31	108.8 (3)	С74—С73—Н73А	109.7
C29—C28—C31	109.8 (3)	O7—C73—H73B	109.7
C30—C28—C27	113.9 (3)	С74—С73—Н73В	109.7
C29—C28—C27	108.2 (3)	Н73А—С73—Н73В	108.2
C31—C28—C27	106.8 (3)	O8—C74—C73	108.9 (3)
С28—С29—Н29А	109.5	O8—C74—H74A	109.9
С28—С29—Н29В	109.5	С73—С74—Н74А	109.9
H29A—C29—H29B	109.5	O8—C74—H74B	109.9
С28—С29—Н29С	109.5	С73—С74—Н74В	109.9
H29A—C29—H29C	109.5	H74A—C74—H74B	108.3
H29B—C29—H29C	109.5	O8—C75—C76	108.8 (3)
C28—C30—H30A	109.5	O8—C75—H75A	109.9
С28—С30—Н30В	109.5	С76—С75—Н75А	109.9
H30A—C30—H30B	109.5	O8—C75—H75B	109.9
С28—С30—Н30С	109.5	С76—С75—Н75В	109.9
H30A-C30-H30C	109.5	Н75А—С75—Н75В	108.3
H30B-C30-H30C	109.5	N9—C76—C75	113.5 (3)
C28—C31—H31A	109.5	N9—C76—H76A	108.9
C28—C31—H31B	109.5	С75—С76—Н76А	108.9
H31A—C31—H31B	109.5	N9—C76—H76B	108.9
C28—C31—H31C	109.5	С75—С76—Н76В	108.9
H31A—C31—H31C	109.5	H76A—C76—H76B	107.7
H31B—C31—H31C	109.5	N9—C77—C78	113.7 (3)
C33—C32—C37	119.0 (3)	N9—C77—H77A	108.8
C33—C32—C10	121.2 (3)	С78—С77—Н77А	108.8
C37—C32—C10	119.7 (3)	N9—C77—H77B	108.8
C32—C33—C34	121.2 (3)	С78—С77—Н77В	108.8
С32—С33—Н33	119.4	Н77А—С77—Н77В	107.7
С34—С33—Н33	119.4	O9—C78—C77	109.3 (3)
C35—C34—C33	119.0 (3)	O9—C78—H78A	109.8
С35—С34—Н34	120.5	С77—С78—Н78А	109.8
С33—С34—Н34	120.5	O9—C78—H78B	109.8
C34—C35—C36	121.3 (3)	С77—С78—Н78В	109.8
С34—С35—Н35	119.4	H78A—C78—H78B	108.3
С36—С35—Н35	119.4	O9—C79—C80	109.4 (2)
C35—C36—C37	119.7 (3)	О9—С79—Н79А	109.8
С35—С36—Н36	120.2	С80—С79—Н79А	109.8
С37—С36—Н36	120.2	О9—С79—Н79В	109.8
C36—C37—C32	119.8 (3)	С80—С79—Н79В	109.8
C36—C37—N6	123.3 (3)	Н79А—С79—Н79В	108.2
C32—C37—N6	116.9 (2)	O10—C80—C79	109.3 (2)
O2—C38—N6	121.3 (3)	O10-C80-H80A	109.8
O2—C38—C39	123.0 (3)	С79—С80—Н80А	109.8
N6—C38—C39	115.6 (3)	O10-C80-H80B	109.8
C38—C39—C42	111.1 (3)	С79—С80—Н80В	109.8

C38—C39—C40	107.9 (3)	H80A—C80—H80B	108.3
C42—C39—C40	109.0 (3)	O10—C81—C82	108.5 (2)
C38—C39—C41	109.4 (3)	O10-C81-H81A	110.0
C42—C39—C41	109.8 (3)	C82—C81—H81A	110.0
C40—C39—C41	109.6 (3)	O10-C81-H81B	110.0
С39—С40—Н40А	109.5	C82—C81—H81B	110.0
С39—С40—Н40В	109.5	H81A-C81-H81B	108.4
H40A—C40—H40B	109.5	N10-C82-C81	113.3 (2)
С39—С40—Н40С	109.5	N10-C82-H82A	108.9
H40A—C40—H40C	109.5	C81—C82—H82A	108.9
H40B-C40-H40C	109.5	N10-C82-H82B	108.9
C39—C41—H41A	109.5	C81—C82—H82B	108.9
C39—C41—H41B	109.5	H82A—C82—H82B	107.7

Fig. 1

